Members
Faculty
Alumni
Current Students
Research
Integrated optical sensor
Augmented reality display system
Optical coherence tomography
Optical molecular imaging
Publication
Journal
Conference
Patent
Lecture
Gallery
News
Home
Members
Faculty
Alumni
Current Students
Research
Integrated optical sensor
Augmented reality display system
Optical coherence tomography
Optical molecular imaging
Publication
Journal
Conference
Patent
Lecture
Gallery
News
Publication
Advanced Photonics Laboratory
Journal
Conference
Patent
Journal
Journal
Conference
Patent
Journal 글답변
Publication
Journal
html
이름
*
비밀번호
*
Year of publication
*
선택하세요
2025
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
Title
*
Author
Co-author
Journal
Status
Vol
Page
> > > Abstract > > This study presents a straightforward, efficient dual-mode thermoreflectance microscopy (TRM) system for analyzing the stationary and dynamic thermal properties of microelectronic devices. The proposed TRM system employs a standard visible microscope and implements two distinct imaging process schemes to obtain thermal images at different time scales. For TRM imaging of an ohmic microdevice, the optimal probing wavelength is predetermined from the thermoreflectance spectrum, acquired using a white light-emitting diode (LED) source and tunable bandpass filters to enhance thermal sensitivity. Thermoreflectance images are obtained in both stationary and transient modes using a four-bucket method and a pulsed boxcar averaging method, respectively. This thermography approach demonstrates highly sensitive, time-integrated stationary thermal imaging and time-gated transient thermal imaging with a temporal resolution of 200 ns. The system shows significant potential as an analytical tool with a sub-micron spatiotemporal resolution for evaluating heat generation and self-heating behavior in microelectronic devices. > >
링크 #1
링크 #2
파일 #1
파일 #2
자동등록방지
숫자음성듣기
새로고침
자동등록방지 숫자를 순서대로 입력하세요.
취소
상단으로